
Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

TOMAS: TOOL FOR OBJECT-ORIENTED MODELING AND SIMULATION

Hans P.M. Veeke, Jaap A. Ottjes
Sub Faculty of Mechanical Engineering and Marine Technology, Fac. OCP

 Delft University of Technology
Mekelweg 2, 2628 CD Delft, the Netherlands

e-mail: H.P.M.Veeke@wbmt.tudelft.nl, J.A.Ottjes@wbmt.tudelft.nl

Keywords
discrete simulation, process-oriented, simulation tool,
animation

SUMMARY

TOMAS is presented as a softwarepackage especially
developed for discrete event simulation of complex control
problems in logistic and production environments. Based on
the experience, that the major part of simulation-effort on
these systems consists of programming algoritms, TOMAS
is implemented as a toolbox in the application-development
environment of Delphi.
The design of TOMAS primarily focuses on problem
oriented modelling (ease-of-use), communication with
problem-owners, speed and flexibility.
A TOMAS model is described by means of the process-
oriented approach, where processes are ‘normal’ object-
methods instead of threads.
For verification and presentation purposes TOMAS supports
full 3D-animation.
TOMAS is now being applied in the simulation of
Automated Guided Vehicle-systems for containertransport
and for operational scheduling in ERP-environments.
Finally, TOMAS will now be further developed to support
distributed simulation and will be connected to qualitative
modeling techniques.

1. INTRODUCTION

In this paper the backgrounds of TOMAS (Tool for Object-
oriented Modeling And Simulation) will be explained.
TOMAS is a softwarepackage developed for discrete event
simulation focused on complex control problems in logistic
and production environments. This means the package must
offer maximum flexibility in describing (often) unique
control processes (par. 2). To support the designprocess of
such complex systems, the way the model is described must
closely connect to modeling techniques used in business and
logistic management (par. 3).
To guarantee the model is working correctly, extensive
facilities must be implemented for verifying the behaviour of
the modeled processes. Not only tracing is needed for this
purpose, but particularly for logistic simulations verification

can only be done by means of animation. And of course,
nowadays a simulationpackage isn’t complete without full
3D-animation. So for presentation purposes this is also
included in TOMAS (par.4).
Because TOMAS is meant to be used in extensive projects, it
must support the possibilities to register experience and
reuse this experience in future projects (par. 5).
Finally the need exists to implement the simulation model as
the real control system. Therefor the model must be
insensitive for the actual implementation of components; a
component can be a simulation model on its own, but also a
real piece of equipment. How this will be realized is
discussed in par. 6. This article will explain the items
discussed by means of a simple job-shop example.

2. FLEXIBILITY

Whenever simulation is being used to investigate complex
control problems, the majority of time in the modeling phase
is spent in just programming the algoritms.
Simulationpackages are often built as “closed” end-user
applications, offering their own supporting language or a
lacking interface to a general programming language
[Kilgore and Healy, 1998]. These packages are normally
based on visual modeling (click and define), and consider
programming as an escape for non-standard cases. The
projects under consideration here are however all special
cases and thus rely completely on these escapes.
Furthermore, starting the modeling in a visual way and
changing to a programming approach on a detailed level is
difficult and the modeler has already lost the touch with
definition details of the components in the model.
Modeling complex logistic or production projects will never
be a standard problem; each project is unique in at least
some of its aspects. Writing a good model for these cases
demands full control over the modeled objects, method-
contents and sequencing. For this reason TOMAS is defined
at a third-generation programming-level. The price to be
paid for this approach is, that modeling simple problems
takes more time.
Looking for a general programming platform the choice
seemed to point evidently to C++ or BASIC. However,
BASIC is an unstructured language and extended models

Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

(with often thousands of elements) can’t reach the required
speed. C++ on the other hand is widely used, offers all
language features needed, but demands great programming
skills and discipline. The last facets aren’t normally found in
an experimental environment of simulation. Simulation
models often start with “global sketches” of the system, and
under these circumstances extensive obligations on
programming conventions only delay the modeling process.
Considering this we’ve decided to develop TOMAS for an
Inprise Delphi environment (Visual Pascal). This Pascal-
implementation possesses a good object-oriented definition,
consistent syntaxis and extended error-prevention and
debugging facilities. This is the basis for building robust
applications. Above that, Delphi is also widely used and
offers all possibilities for interfacing to other packages and
programming environments according to standard
conventions.

3. MODELING TECHNIQUE

TOMAS offers discrete event simulation (Zeigler, 1985)
based on the process approach. Normally the use of this
approach is only argumented by the fact, that processes seem
to be an ‘intuitive’ way of describing a system. This is true,
but using process-descriptions also keeps the connection
with business modeling. Business or enterprise models are
nowadays almost always process-oriented (p.e. BPR).
Process orientation is therefor necessary.
As a starting-point of modeling in TOMAS, systems theory
[in ’t Veld,1998] is being used. In systems theory the entities
are called ‘elements’ and the theory makes a distinction
between active or ‘processing’ elements (processelements)
and passive or ‘to be processed’ elements (flowelements).
However, cases can be easily found, where flowelements
perform part of a process themselves, so TOMAS only
defines a general class ‘TomasElement’. Specific elements
can be defined as descendants of a TomasElement, and each
TomasElement may or may not have a process-method.
A definition-example is shown in the next code, where a
machine-, a job- and a generator-object are being defined.
By overriding the default process-method of a
TomasElement, the MachineClass and GeneratorClass are
defined as active elements.

In the initialization-part of the module (or activated by a
button-press on the user’s form), the modeler can create
machines and a generator and activate them. Here we reach
the point where some explanation is needed about the
sequencing-mechanism of TOMAS. The process-approach
results in the generation of events during process-execution.
As can be seen in the above example, processes are just
normal object-methods of a class. To achieve parallel
process-execution, other simulationtools use the thread-
mechanism of Windows (Healy and Kilgore, 1998).

Threads can perform well, but the number of threads is
limited. Increasing the number of threads degrades runtime
speed significantly.

Therefor TOMAS uses a programmed sequencing
mechanism, that is able to collect events and activating the
programming code at any point within a method. By using
this principle TOMAS models are extremely fast [Veeke and
Ottjes, 1999]. To achieve this two kind of methods are
provided:
a. Methods of the current process (implicit TOMAS-

object). The next table explains some examples.

Method Meaning
Hold(T) Wait/Work for T time-units
Standby Wait for condition to become TRUE
Passivate Wait
Terminate Terminate the process

By calling these methods from within a process-method
of a TomasElement, programcontrol returns to the
sequencing-mechanism and another process is selected
to become ‘current’. All these methods tell the
sequencing mechanism that there will be no state-
change for some time as far as the current process is
concerned.

b. Methods of a TomasElement. These methods control the
initialization, continuation and cancelling of an
element’s process.

Type
 MachineClass = class;
 JobClass = class;
 GeneratorClass = class;

 MachineClass = class(TomasElement)
 Job: JobClass;
 JobList: TomasQueue;
 Published
 Constructor Create(Name: String);
 Procedure Process; Override;
 End;

 JobClass = class(TomasElement)
 Duration: Double;
 Constructor Create(Name: String; Duration: Double);
 End;

 GeneratorClass = class(TomasElement)
 ArrivalDis: Distribution;
 DurationDis: Distribution;
 Published
 Constructor Create(Name: String);
 Procedure Process; Override;
 End;

Example 1. Definition of elementclasses

Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

Method Meaning
StartProcess(T) Start execution of the process-

method at time T
ResumeProcess(T) Resume execution of the

process-method at Time T
InterruptProcess Interrupt execution of the

process-method now, saving
the resttime

CancelProcess Cancel execution of the
process-method now

Returning to the example of the simple jobshop the
processes of a machine and a generator may look like
example 2.

From the examples it becomes also clear, that TOMAS
contains the usual queuing-objects (called TomasQueues)
to model waitinglines easily and to generate automatically
statistical data on waiting-times, leadtimes and occupation.
These are the kernel-objects and methods of TOMAS.

Added to it are of course the complete functionalities of a
Delphi-environment. The modeler is able to define his/her
own forms to visualize whatever is needed. TOMAS is
implemented as a toolbox, so simulation can be made part
of any Delphi-application. At this moment a TOMAS-
simulation is being incorporated into an ERP-environment.
The simulationmodel is used therein for the detailed
shopfloor-scheduling.

4. VERIFICATION AND 3D-ANIMATION

To check the correct working of the model TOMAS offers
a number of options (see fig. 1).

Procedure MachineClass.Process; Procedure GeneratorClass.Process;
 Begin Var
 While TRUE Do GenJob: JobClass;
 Begin Begin
 While JobList.Length = 0 Do While TRUE Do
 Begin Begin
 StandBy; {wait until job available} Hold(ArrivalDis.Sample);
 End; GenJob:=JobClass.Create(‘Job’,DurationDis.Sample);
 Job:=JobList.GetFirstElement; Machine.JobList.AddToTail(GenJob);
 JobList.Remove(Job); End;
 Hold(Job.Duration); End; {GeneratorClass.Process}
 Job.Destroy;
 End;
 End; {MachineClass.Process}}

Example 2. Process-descriptions

Tracing eventsQueue statistics

Histogram

Time-series

Fig. 1. Standard form of TOMAS

Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

First a complete trace of events in the simulation can be
shown. All events that change the state of a process or
change the contents of queues are added automatically.
Furthermore, the user can add his own checking by means
of the ‘writetrace’ method of a TomasElement.
For each queue TOMAS gathers statistical data, so
verification by global calculation is easy.
Also, for each TomasElement the history of events is
being collected to support the verification at the process-
level of the element. And finally user-defined items can be
collected by means of a TomasCollection-object, that can
be represented as a graphical time-series or as a histogram.
All data can be exported to standard applications as Excel,
Access etc.

For logistic systems verification should support at least
2D-animation. For example to verify two vehicles don’t
collide, a visual representation is needed. The drawing
facilities of Delphi already provide the means for this kind
of verification.

For presentation purposes however 3D-animation is
nowadays required. This kind of animation combines the
visual verification and presentation-needs. The
implemented animationtools into TOMAS are based on
the general principles of speed and ease-of-use.
Maximum speed however is not always necessary. Using
animation as a verification tool, the speed of the animation
must even be relatively slow to assure, that the user is able
to conceive all the details. Using animation as a

presentation tool, speed requirements fall within 1 to 5
times realtime-speed.
Speed is generally accomplished by optimizing the refresh
rate of the screen. Knowing this, TOMAS implicitly has a
big advantage on general animation environments.
For example, when 5 vehicles change position at the same
eventtime, the screen must be refreshed only once.
Therefor TOMAS refreshes the screen only once per
eventtime at the most. By implementing the refreshrate as
a function of event-interval, speeding up an animation is
becoming very simple. All rendering methods in TOMAS
are based on a Graphical Component TGMP (Dove and
Peer,1997). The TGMP-component has been optimized
according to the above-mentioned refresh-mechanism.
Until now no OpenGl or DirectX-interface is needed,
because quality and speed seem to be sufficient even in
extended models.
The TomasAppearance-class is a descendant of the
TomasElementClass, with animation-attributes and –
methods added to it.

A TomasAppearance is described by means of geometrical
shapes. Standard shapes as boxes, spheres and wheels are
predefined; general shapes can be constructed from
wireframe-definitions. Besides the methods Show and
Hide there are other methods to define movement such as
MoveTo and Bend2D. Several rendering modes such as
wireframe and solidshade are available.
For animationpurposes a standard Camera-object is
available, that can be programmed as well as moved
interactively during simulation. It can also be attached to

Fig.2 Screenshot of TOMAS-animation

Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

one of the animated components, so a high degree of
‘virtual reality’ can be reached by simple programming or
manipulating. In fig.2 a screenshot is shown of a
containerterminal with Automatic Guided Vehicles
(AGV’s), where the camera is connected to one of the
AGV’s.

5. STANDARD ELEMENTS

To support the reuse or generalisations of once defined
elements, the Delphi-environment offers a perfect option
by means of its component-library. TOMAS can now be
easily extended with two possibilities:
a. Equipment, specific for a company, must be described

(programmed) only once and is then added to the
library for future reuse in other simulation-models.

b. From the TOMAS-development point-of-view,
generic elements can be defined. At this moment a
TomasResource is already available, which is a
generalization of the MachineClass in example 1.
Defining Machine as a TomasResource the process-
method of the machine isn’t needed anymore.

Example 3 shows the process of the Generatorclass,
which is now sufficient to describe the jobshop-
model. After the process-method the create-statement
for the machine is illustrated. This also illustrates the
flexibility of TOMAS, because in the creation the
selection-method for jobs in the JobList of the
resource is defined. In this case a standard method
‘FIFOSelect’ is chosen, but the modeler is free to
attach here a complex user-written method.
Besides the TomasResource another standard element
is the TomasSemaphore. Contrary to the
TomasResource, a TomasSemaphore doesn’t possess
its own process-method, but is able to suspend
TomasElements competing for the same limited
capacity.

Remember, it always remains possible to create
descendants of these standardelements with their own
attributes and process-method.

6. CURRENT AND FUTURE DEVELOPMENTS

At this moment the first implementation for distributed
modeling is available. As can be seen in another
presentation of this conference (Ottjes) an agent-based
jobshopmodel and a critical-path model are being
combined into one synchronised simulation-model. In this
case the critical-path model is completely controlled by the
jobshopmodel. For general distributed modeling TOMAS
now consists of a server-application, that synchronizes
several client-models. Communication between the models
is for the time-being based on the standard Windows
‘mailslots’. It’s a primitive way of communication,
restricted to local networks, but extremely dynamic: just
exchange strings of data. Before using advanced and
standardized communication-interfaces like CORBA, we
first want to define the communication-needs in detail. It
already became clear, that a small number of messages
with only a few data are necessary to facilitate full-
distributed simulation. In fact, only messages for the
process-sequencing methods as defined in par. 3, are
necessary.
The next step will be the definition of an interfacelayer to
make the server-application independent of the client-
applications. It must be of no concern, either the client-
application is a real piece of equipment or a
simulationmodel.
Parallel to these developments, research is being done to
combine qualitative business/logistic modeling and
quantitative modeling with simulation. In simulation
literature little can be found on the theory of modeling.
What is called modeling refers almost always to the
technique of simulation. Little is said about the way to
define elements and processes derived from an initial
problem-statement. Systems theory however is such a
qualitative modeling theory. The world of simulation is
primarily focused on the question: ‘Is the model good?‘
(verification), but seldom the question: ‘Is this a good
model?’ (validation) is fully answered. Therefor the
development of a software package PROMOTE (PROcess
Modeling Tool for Engineering) is started, that supports
systems theory and should finally generate simulation-
models (with TOMAS) automatically, thereby
guaranteeing the correct translation of problem to model.

Procedure GeneratorClass.Process;
 Var
 GenJob: JobClass;
 Begin
 While TRUE Do
 Begin
 Hold(ArrivalDis.Sample);
 GenJob:=JobClass.Create(‘Job’,DurationDis.Sample);
 Machine.Claim(GenJob,1,GenJob.GetDuration);
 End;
 End; {GeneratorClass.Process}
…
{define the resource with minimum capacity 0,
 maximum capacity 1 and the FIFO-selectionmethod}
Machine:=TomasResource.Create(‘Machine,0,1,FIFOSelect);
…

Example 3. Use of Resources

Proceedings of the Business and Industry Simulation Symposium (ASTC 1999).
April 2000. Washington D.C. [SCS]. ISBN 1-56555-199-0

REFERENCES

Kilgore, R. and K. Healy, 1998. “JAVA, Enterprise
Simulation and the Silk simulation language.”
Proceedings of the 1998 International Conference on
Web-based Modeling & Simulation. SCS, San Diego CA.

Zeigler, B.P., 1985. “Thery of Modeling and Simulation.”
Krieger, Malaba.

in 't Veld, Prof. J. 1998. “Analysis of organisation
problems”. Educatieve Partners Nederland BV, 1998,
ISBN 90 11 045947 (in Dutch)

Healy, K. and R. Kilgore, 1998. “Introduction to Silk and
Java-based Simulation”. Proceedings of the 1998 Winter
Simulation Conference, IEEE, Piscataway, NJ.

Veeke, H.P.M. and J.A. Ottjes, 1999. “Problem oriented
modeling and simulation.” Proceedings of the 1999
Summer Computer Simulation Conference , Chicago,
Illinois, ISBN #1-56555-173-7.

Dove, P. and D. Peer, 1997.”Getting DIBS on speed.”
Delphi Informant, Vol. 3 Nr. 4 (April).

